Search results for "poikkeavuuden havaitseminen"

showing 4 items of 4 documents

Combining conjunctive rule extraction with diffusion maps for network intrusion detection

2013

Network security and intrusion detection are important in the modern world where communication happens via information networks. Traditional signature-based intrusion detection methods cannot find previously unknown attacks. On the other hand, algorithms used for anomaly detection often have black box qualities that are difficult to understand for people who are not algorithm experts. Rule extraction methods create interpretable rule sets that act as classifiers. They have mostly been combined with already labeled data sets. This paper aims to combine unsupervised anomaly detection with rule extraction techniques to create an online anomaly detection framework. Unsupervised anomaly detectio…

Computer scienceAnomaly-based intrusion detection systemNetwork securityintrusion detectiontunkeutumisen havaitseminenFeature extractionDiffusion mapdiffusion mapIntrusion detection systemMachine learningcomputer.software_genrepoikkeavuuden havaitseminenBlack boxtiedon louhintan-grammiCluster analysista113Training setrule extractionbusiness.industryn-gramanomaly detectiondiffuusiokarttakoneoppiminensääntöjen erottaminenAnomaly detectionArtificial intelligenceData miningtiedonlouhintabusinesscomputer2013 IEEE Symposium on Computers and Communications (ISCC)
researchProduct

Anomaly Detection from Network Logs Using Diffusion Maps

2011

The goal of this study is to detect anomalous queries from network logs using a dimensionality reduction framework. The fequencies of 2-grams in queries are extracted to a feature matrix. Dimensionality reduction is done by applying diffusion maps. The method is adaptive and thus does not need training before analysis. We tested the method with data that includes normal and intrusive traffic to a web server. This approach finds all intrusions in the dataset. peerReviewed

Web serverComputer scienceintrusion detectionDimensionality reductionFeature matrixDiffusion mapdiffusion maphyökkäyksen havaitseminenIntrusion detection systemcomputer.software_genreanomaly detectionpoikkeavuuden havaitseminendiffuusiokarttakoneoppiminenAnomaly detectionData miningtiedonlouhintan-grammitcomputern-grams
researchProduct

Dimensionality reduction framework for detecting anomalies from network logs

2012

Dynamic web services are vulnerable to multitude of intrusions that could be previously unknown. Server logs contain vast amounts of information about network traffic, and finding attacks from these logs improves the security of the services. In this research features are extracted from HTTP query parameters using 2-grams. We propose a framework that uses dimensionality reduction and clustering to identify anomalous behavior. The framework detects intrusions from log data gathered from a real network service. This approach is adaptive, works on the application layer and reduces the number of log lines that needs to be inspected. Furthermore, the traffic can be visualized. peerReviewed

diffuusiokarttakoneoppiminenintrusion detectiontunkeutumisen havaitseminendiffusion maptiedonlouhintan-grammitanomaly detectionn-gramspoikkeavuuden havaitseminen
researchProduct

Using affinity perturbations to detect web traffic anomalies

2013

The initial training phase of machine learning algorithms is usually computationally expensive as it involves the processing of huge matrices. Evolving datasets are challenging from this point of view because changing behavior requires updating the training. We propose a method for updating the training profile efficiently and a sliding window algorithm for online processing of the data in smaller fractions. This assumes the data is modeled by a kernel method that includes spectral decomposition. We demonstrate the algorithm with a web server request log where an actual intrusion attack is known to happen. Updating the kernel dynamically using a sliding window technique, prevents the proble…

diffuusiokarttaulottuvuuden pienennysweb trafficverkkoliikenneeigenvalue problemdiffusion mapsominaisarvo-ongelmaperturbaatioteoriaanomaly detectionpoikkeavuuden havaitseminenperturbation theorydimensionality reduction
researchProduct